引用计数法

给对象中添加一个引用计数器,每当有一个地方引用它时,计数器就加1;当引用失效时,计数器值就减1;任何时刻计数器为0的对象就是不可能再被使用的。
客观地说,引用计数算法(Reference Counting)的实现简单,判定效率也很高,在大部分情况下他都是一个不错的算法)。
但是至少主流的Java虚拟机里没有选用该方法来管理内存,其中最主要的原因是它很难解决对象之间相互循环引用的问题。

可达性分析算法

这个算法的基本思路就是通过一系列的称为“GC Roots”的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC Roots没有任何引用链相连(用图论的话来说,就是从GC Roots到这个对象不可达)时,则证明此对象是不可用的。

在Java语言中,可作为GC Roots的对象包括下面几种:

  • 虚拟机栈(栈帧中的本地变量表)中引用的对象
  • 方法区中类静态属性引用的对象
  • 方法区中常量引用的对象
  • 本地方法栈中JNI(即一般说的Native方法)引用的对象

标记-清除算法

首先标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象。

它是最基础的收集算法,后续的收集算法都是基于这种思路并对其不足进行改进而得到的。

它的主要不足有两个:

  • 效率问题,标记和清除两个过程的效率都不高
  • 空间问题,会产生大量不连续的内存碎片,空间碎片太多可能会导致以后在程序运行过程中需要分配较大对象时,无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。

复制算法

为了解决效率问题,一种称为”复制“的收集算法,它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活的对象复制到另一块上面,然后再把已使用过的内存空间一次清理掉。

这种算法的代价是将内存缩小为原来的一半,未免太高了一点。

现在的商业虚拟机都采用这种收集算法来回收新生代。IBM公司的专门研究表明,新生代中的对象98%是”朝生夕死“的,所以不需要按照1:1的比例来划分内存空间,而是将一块内存分为一块较大的Eden空间和两块较小的Survivor空间,每次使用Eden和其中一块Survivor。当回收时,将Eden和Survivor中还存活着的对象一次性地复制到另外一块Survivor空间上,最后清理掉Eden和刚才用过的Survivor空间。Hotspot虚拟机默认Eden和Survivor大小比例是8:1。

当然,我们也没有办法保证每次回收都只有不多于10%对象存活,当Survivor空间不够用时,需要依赖其他内存(这里指老年代)进行分配担保(Handle Promotion)。

标记-整理算法

复制收集算法在对象存活率较高时就要进行较多的复制操作,效率将会变低。更关键的是,如果不想浪费50%的空间,就需要有额外的空间进行分配担保,以应对被使用的内存中所有对象都100%存活的极端情况,所以在老年代一般不能直接选用这种算法。

根据老年代的特点,有人提出标记-整理算法,标记过程仍然与”标记-清除“算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存。

分代收集算法

当前商业虚拟机的垃圾收集都采用”分代收集“算法,这种算法根据对象存活周期的不同将内存分为几块。一般是把Java堆分为新生代和老生代。